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Flexoelectric Instability in Nematic Liquid
Crystal between Coaxial Cylinders

L.V. KOTOV? M.V. KHAZIMULLIN? and A.P. KREKHOV®

Anstitute of Molecule and Crystal Physics, Russian Academy of Sciences,
450025 Ufa, Russia and bPhysikalisches Institut, Universitit Bayreuth, D-95440
Bayreuth, Germany

The stability of the equilibrium configurations of a nematic liquid crystal confined between
two coaxial cylinders is analysed when a radial electric field is applied and the flexoelectric
effect is taken into account. The threshold for perturbations depending only on the radius  in
the cylindrical coordinate system and strong boundary conditions is studied. A new type of
orientational transition caused by pure flexoelectric effect is found.

Kevwords: nematic liquid crystal; flexoelectric instability

INTRODUCTION

The uniform orientation of nematic liquid crystal (NLC) is caused by
the orienting action of appropriately treated confining plates, which
define a fixed orientation of the NLC at the boundary. When an elec-
tric or magnetic field is applied to such NLC sample in an appropriate
direction, a director reorientation via a Fréedericksz transition may
result, which has been studied extensively in case of a plane layer
geometry.

For a NLC confined between two coaxial cylinders the orienta-
tional transition may occur even in the absence of external fields
depending on the ratio of the radii of the inner cylinder to that of
the outer one [1, 2]. The Fréedericksz transition in this geometry
was analysed for a magnetic field directed radially outwards from
the common axis of the cylinders [3] and tangentially to circles in
the plane perpendicular to the cylinders’ axis [4, 5] as well as for
a radial electric field. Here a voltage was applied between the two

[27371/885



Downloaded by [University of California, San Diego] at 23:02 15 August 2012

886/[2738] LV. KOTOV et al.

coaxial cylinders [6, 7]. In this geometry the critical voltage for the
Fréedericksz transition depends on the ratio between the cylinders
radii.

In this paper we analyse the influence of the flexoelectric effect on
the orientational transitions in a NLC confined between two coaxial
cylinders under applied d.c. radial electric field. The flexoelectricity
describes the linear coupling between an applied electric field and
gradients in the director field [8]. In contrast to the case of a plane
nematic layer, in cylindrical geometry under applied electric field one
has a contribution from the flexoelectric effect in the bulk torque act-
ing on the director. Here we calculate the critical voltage for the ori-
entational transition where the director distribution i = (n,,ng, n;)
depends only on the radius r in the cylindrical coordinate system
(r,¢,2) with z axis along the axis of cylinders. Strong boundary
conditions are imposed. Two typical initial director distributions
[homeotropic orientation @i = (1,0,0) and planar one it = (0, 1,0)]
are considered. It is found that for planar orientation a new type of
orientational transition caused purely by the flexoelectric effect takes
place.

BASIC EQUATIONS

Let us consider the nematic enclosed between two infinite coaxial
cylindrical electrodes whose inner and outer radii are r; and ro, re-
spectively. The director distribution i = fi(r) depends only on r.
The voltage applied between the electrodes provides the radially di-
rected electric field E = (E,0,0). The equilibrium director configu-
ration can be found from the extremum condition of the total free
energy (per unit length of cylinders)

F =27 /: (Fa+ Fa + Fprdr . 1
Here Fj is the elastic energy density
Fa= 3[Ky (V-8 + Ky (8 (9 x ) + K5 (8 x (V x 8))7] . (2)
The electric field contribution is given by

1 .
F,= —5éce (8 -E)?, 3)
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where €, = ¢ — €, is the dielectric anisotropy and the radial compo-
nent of the electric field E = U/[r In(ry/r()] with U = U(r,) — U(rs)
the voltage drop across the cylinders. The contribution of flexoelec-
tricity

Fﬂ=—(E'P), P=811ﬁ(V'ﬁ)—633(ﬁX(VXﬁ)) (4)

is connected with flexo-polarization P induced by the splay and bend
deformations of the director field and e;;, es3 are the flexoelectric
coefficients.

Minimisation of (1) with the normalisation #i? = 1 gives the
torque balance equation
oo . d(af\ 8f . _
[nxh]‘()’ hl_dr (ani,,>_6ni’ 1,—-1",¢,Z (5)

- where f = (Fq+ Fa + Fp)r. One can easily verify that fig = (1,0,0)

and fiy = (0,1, 0) are solutions of equation (5) for homeotropic and
planar boundary conditions, respectively.

STABILITY ANALYSIS

Let us now examine the stability of these configurations.
I) Homeotropic anchoring with boundary conditions

fi(r=r) =i(r =) =(3,0,0). (6)

Small deviations from the exact solution fig = (1,0,0) of (5) can be
written as

fi=fig+dh= [1 - -;-(5113, + dn?); dng; an,] (7)

up to second order in the perturbations dn,, dn, which depend only
on r. Then for the change of total free energy one obtain up to
second order in 6fi

AFrom = Fitg) — F(fg + 60) =
-9 leK 162 on? 1K6'2 n’? 162
= ‘Il’/":1 {5 1[_7‘_2( n¢+ n,)]+§ 3[ n¢+ nz+;2— n¢]+

1 ~o 1
56060U2;5((5n?¢ +6n?) +

-1 o1
U611T—2(6n$ + 6”3) + Ue331726n3}rdr y (8)
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where the boundary conditions di(r = ry) = i(r = ry) = 0 were
taken into account, U = U/In(ry/r,) and f' = df /dr.

The necessary and sufficient condition for AF,,, to be positive
definite is that the Euler-Lagrange equations

a? ~ ~
Kga—52-6n¢ + [K1 - K3 - E()E‘l[]2 — 2U(€11 + e33)]6n¢ =0 ) (9)

2 ~ ~
K3a({7671; + [K1 - ngaU2 — 2U€11]6nz =0 y (10)

have nonzero solutions dng,dn, # 0 in the range 0 < a < In(ry/ry)
where we introduced the new variable a = In(r/r;). Since equations
(9), (10) are uncoupled one gets two independent conditions for the
instability of initial homeotropic orientation with respect to dn, and
dn, perturbations. Solving (9), (10) one obtains for the critical volt-
age U, for the two types of orientational transitions in cylindrical
geometry

dng :  —sign(e,) ( UC) - (*U") Heu + o) /)

UFa UFs 7r\/K360|e,,|
2
- 1+ K3I—(—3K1 (ln(r;/rl)) , (11)
. U, \? U, \ 2ey; In(ry/7y)
on, : —sign(e, (—) - ( ) —_— =
(€2) Ur, Uk, T/ K3€gleq|
K, (1 2
=1- (—“(Tjr/ T‘)) , (12)

where Ug, = m1/Kj3/€o|€,] is the threshold voltage for the bend Frée-
dericksz transition in case of a plane NLC layer. In Figure 1 the
two types of transitions correspond to dny and dn, perturbations are
shown schematically. In the absence of electric field (U = 0) there
is a possibility of orientational transition for a radius ratio above
some critical value. The transition corresponding to én, perturbation
[Fig. 1(b)] comes first and occurs at In(ra/r1) = 7/ K3/K).

For a nematic liquid crystal with negative dielectric anisotropy
{e. < 0) the flexoelectric effect reduces the critical voltage for the
orientational transition. Using the MBBA material parameters at
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Figure 1: Orientational transition for ény (a) and dn, (b).
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Figure 2: Critical voltage versus ratio of the radii for MBBA with
homeotropic (a) and planar (b) anchoring.

25°C K, = 6.66- 10712 N, K, =4.2-10"2 N, K; = 8.61-10"1? N,
€. = —0.53 and taking for the flexocoefficients the order of magnitude
e1] + ez = ey = —107!! C/m [9, 10] we found that the transition
corresponding to dn, perturbation has lower threshold [Fig. 2(a)].
In this case above ry/r; = 35.6 the orientational transition occurs
without electric field.

IT) Planar anchoring with boundary conditions
a(r =7) =i{r=ry) =(0,1,0). (13)

Similar to the case of homeotropic orientation, small deviations from
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Figure 3; Orientational transition for dn, (a) and dn, (b).

the exact solution fig = (0,1, 0) of (5) can be written as
L
2
up to second order in the perturbations én,, én, which depend only

on 7. Then the change of total free energy up to the second order in
611 is

A = fio + 68 = |6y 1 — =(6n2 + 6n2); 5n,] (14)

A]'-p,,m = f(fl(]) - ]:(ﬁo + 5ﬁ) =

_ Tl n, Lo og 1 2, Lo g
=2r / 1 {GKilon? + =5on] + S Kolén? + —on]

1,12 2y L q2d ¢ 9

§K3r_2(6n' +dn2) ~ -2—eoeaU r—zénr -

-1 -1

Uey T—ztsnf - Uegar—z(énf + Jnf)}rdr , (15)

where the boundary conditions $ii(r = r1) = i(r = ry) = 0 were
taken into account.

The instability conditions can be obtained from the Euler-Lagrange
equations

2 ~ ~
K1a%55nr +[Ks— K1+ EoéaU2 + 2U(ey; + e33)]6n, = 0,(16)

Kg%én, + [2K3 — Ky + 2[]633]6”; =0. (17)
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Here again the equations (16), (17) are uncoupled and one has two
independent conditions for the instability of initial planar orientation
with respect to én, and dn, perturbations (Fig. 3). The critical
voltage U, for the orientational transition can be found from the
solution of (16), (17)

2
one st () + () 2ot idind -

UF] W\/Klfolfal
_ . Ks— K (ln(ry/r)\?
=1 Koo ( nl) (18)
P (_l{c_) 2eg3In(ra/m)
s UFz W\/K260|6a|
_ 2K3—K2 111(7‘2/7'1) 2
— 1M ( /) (19)

where Up, = my/Ki/eoles], Ur, = my/Ka2/€oles| are the threshold
voltages for the splay and twist Fréedericksz transition in the case
of a plane NLC layer, respectively. Without electric field one has
the orientational transitions at the critical radius ratio In(ry/r) =
W‘/Kl/(Ks - Kl) [Flg 3(&)] and 11’1(7"2/1"1) = W\/Kg/(2K3 —_ Kg)
[Fig. 3(b)].

For NLC with ¢, > 0 the flexoelectric effect reduces the critical
voltage for the transition corresponding to én, perturbations similar
to that found in the case of homeotropically oriented nematics with
€a < 0 [Fig. 2(a)]. Equation (19) demonstrates a new feature of
the cylindrical geometry, namely, the possibility of an orientational
transition caused purely by the flexoelectric effect. In Figure 2(b)
the threshold voltage corresponding to the flexoelectric instability
(6n. perturbation) as a function of the ratio of the radii is plotted
for the MBBA material parameters and eg3 = —107!! C/m. Above
ro/T1 = 5.96 the transition takes place without electric field.

Thus, the analysis of the orientational transitions in a NLC con-
fined between two coaxial cylinders shows the strong influence of the
flexoelectric effect on the critical voltage. For planar boundary condi-
tions a pure flexoelectric instability is found. In this case the polarity
of critical voltage depends only on the sign of the flexo-coeflicient e3;
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which allows to determine the value and the sign of e3; in a simple
experiment. Choosing the radius ratio of the cylinders close to the
critical (above which the transition occurs without electric field) one
can make the threshold voltage for the flexoelectric-induced orienta-
tional transition very small and reduce the possible influence of the
electric current in a not sufficiently clean NLC materials.
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